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Abstract

We introduce a second-order, central-upwind finite volume method for the discretization of nonlinear hy-
perbolic conservation laws posed on the two-dimensional sphere. The semi-discrete version of the proposed
method is based on a technique of local propagation speeds and it is free of any Riemann solver. The main
advantages of our scheme are the high resolution of discontinuous solutions, its low numerical dissipation,
and its simplicity for the implementation. The proposed scheme does not use any splitting approach, which
is applied in some cases to upwind schemes in order to simplify the resolution of Riemann problems. The
semi-discrete form of the scheme is strongly linked to the analytical properties of the nonlinear conserva-
tion law and to the geometry of the sphere. The curved geometry is treated here in an analytical way so
that the semi-discrete form of the proposed scheme is consistent with a geometric compatibility property.
Furthermore, the time evolution is carried out by using a total-variation-diminishing Runge-Kutta method.
A rich family of (discontinuous) stationary solutions is available for the problem under consideration when
the flux is nonlinear and foliated (as identified by the author in an earlier work). We present here a series of
numerical examples, obtained by considering non-trivial steady state solutions and this leads us to a good
validation of the accuracy and efficiency of the proposed central-upwind finite volume method. Our numer-
ical tests confirm the stability of the proposed scheme and clearly show its ability to capture accurately
discontinuous steady state solutions to nonlinear hyperbolic conservation laws posed on the sphere.
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1. Introduction

Solutions to hyperbolic partial differential equations generally develop discontinuities in finite time, even
from smooth initial conditions. Various classes of so-called shock-capturing schemes have been proposed. In
particular, upwind and central schemes have been used to numerically solve these equations. Generally, it
can be stated that the difference between these schemes is that upwind methods use characteristic-related
information, while central methods do not. The use of characteristic information in upwind schemes can
improve the results but renders these schemes, in some cases, computationally expensive. Central schemes
are widely used (see e.g.[27]) after the pioneering work of Nessyahu and Tadmor [25], where a second-order
finite volume central method on a staggered grid in space-time was first proposed. This strategy leads to
high-resolution and the simplicity of the Riemann-solver free method. As observed in Kurganov and Tadmor
[12], this scheme suffers from excessive numerical viscosity when a small time step is considered.

In order to improve the performance of central schemes, some characteristic information can still be used.
Kurganov et al. [15] proposed the central-upwind schemes which are based on information obtained from
the local speeds of wave propagation. The central-upwind schemes can be considered as a generalization
of central schemes originally developed by Kurganov and Tadmor [12, 13], Kurganov and Levy [14], and
Kurganov and Petrova [16]. The central-upwind schemes are simple, since they use no Riemann solvers, and
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they have proven their effectiveness in multiple studies, as shown in [19, 20, 22, 23, 21, 17]. Kurganov and
Petrova [18] extended the central-upwind schemes to triangular grids for solving two-dimensional Cartesian
systems of conservation laws. Next, Beljadid et al. [4] proposed a two-dimensional well-balanced and
positivity preserving cell-vertex central-upwind scheme for the computation of shallow water equations with
source terms due to bottom topography.

Several studies have been recently developed for hyperbolic conservation laws posed on curved manifolds.
The solutions of conservation laws including the systems on manifolds and on spacetimes were studied in
[26, 24] and by LeFloch and co-authors [1, 2, 6, 5] and [10]–[11]. More recently, hyperbolic conservation
laws for evolving surface were investigated by Dziuk, Kroöner and Müller [7], Giesselman [9], and Dziuk
and Elliott [8]. Earlier on, for such problems, Ben-Artzi and LeFloch [6] and LeFloch and Okutmustur [11]
established a general well-posedness theory for conservation laws on manifolds.

Burgers equation provides a simple, yet challenging equation, which admits discontinuous solutions and
it provides a simplified setup for the design and validation of shock-capturing numerical methods. Burgers
equation and its generalizations to a curved manifold have been widely used in the physical and mathematical
literature. In [3], we have used a class of Burgers-type equations on the sphere and adopted the methodology
first proposed by Ben-Artzi, Falcovitz, and LeFloch [5], which uses second–order approximations based on
generalized Riemann problems. In [3], a scheme was proposed which uses piecewise linear reconstructions
based on solution values at the center of the computational cells and on values of Riemann solutions at the
cell interfaces. A second-order approximation based on a generalized Riemann solver was then proposed,
together with a total variation diminishing Runge-Kutta method (TVDRK3) with operator splitting for the
temporal integration.

The finite volume methods developed in [3] and [5] are strongly linked to the structure of governing
equation. The geometric dimensions are considered in an analytical way which leads to discrete forms of
schemes that respect exactly the geometric compatibility property. The splitting approach which is used in
these schemes simplifies the resolution of the Riemann problem but it increases the computational cost.

In the present study, we propose a new finite volume method which is less expensive in terms of com-
putational cost. This scheme is free of any Riemann solver and does not use any splitting approach, while
such a splitting is widely used in upwind schemes when one needs to simplify the resolution of Riemann
problems. The proposed paper provides the first study of central-upwind schemes for conservation laws on
a curved geometry.

Burgers equation and its generalizations will be used in the present paper in order to develop and validate
the new finite volume method. We design in full detail a geometry-compatible central-upwind scheme for
scalar nonlinear hyperbolic conservation laws on the sphere. This system has a simple appearance but it
generates solutions that have a very rich wave structure (due to the curved geometry) and its solutions
provide an effective framework for assessing numerical methods. Our goal is to develop and validate a finite
volume method which is free of any Riemann problem and is consistent with the geometric compatibility
(or divergence free) condition, at the discrete level. As we prove it, the proposed scheme is efficient and
accurate for discontinuous solutions and implies only negligible geometric distorsions on the solutions.

An outline of the paper is as follows. In Section 2, the governing equations related to this study are
presented. Section 3 is devoted to the derivation of the semi-discrete version of our scheme. In Section 4,
the coordinate system and the non-oscillatory reconstruction are described. In Section 5, we present the
geometry-compatible flux vectors and some particular steady state solutions as well as confined solutions,
which will be used to validate the performance of the proposed method. In Section 6, we demonstrate the
high-resolution of the proposed central-upwind scheme thanks to a series of numerical experiments. Finally,
some concluding remarks are provided.

2. Governing equations

We consider nonlinear hyperbolic equations posed on the sphere S2 and based on the flux-vector F :=
F (x, u), depending on the function u(t, x) and the space variable x. This flux is assumed to satisfy the
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following geometric compatibility condition: for any arbitrary constant value ū ∈ R,

∇ · (F (·, ū)) = 0, (1)

and that the flux takes the form
F (x, u) = n(x) ∧ Φ(x, u), (2)

where n(x) is the unit normal vector to the sphere and the function Φ(x, u) is a vector field in R3, restricted
to S2 and defined by

Φ(x, u) = ∇h(x, u). (3)

Here, h ≡ h(x, u) is a smooth function depending on the space variable x and the state variable u(t, x).
Observe that (for instance by Claim 2.2 in [5]) the conditions (2) and (3) for the flux vector are sufficient
to ensure the validity of the geometric compatibility condition (1).

We are going here to develop and validate a new geometry-preserving central-upwind scheme which
approximates solutions to the hyperbolic conservation law

∂tu+∇ · F (x, u) = 0, (x, t) ∈ S2 × R+, (4)

where ∇·F is the divergence of the vector field F . Given any data u0 prescribed on the sphere, we consider
the following initial condition for the unknown function u := u(t, x)

u(x, 0) = u0(x), x ∈ S2. (5)

Equation (4) can be rewritten, using general local coordinates and the index of summation j, in the form

∂tu+
1√
|g|
∂j(
√
|g|F j(x, u)) = 0, (6)

or
∂t(
√
|g|u) + ∂j(

√
|g|F j(x, u)) = 0, (7)

where in local coordinates x = (xj), the derivatives are denoted by ∂j := ∂
∂xj , F j are the components of the

flux vector and g is the metric.
The conservation law (4) becomes as follows

∂tv + ∂j(
√
|g|F j(x, v/

√
|g|)) = 0, (8)

where v = u
√
|g|. This form will be used in the derivation of the semi-discrete form of the proposed scheme.

For latitude-longitude grid on the sphere, the divergence operator of the flux vector is

∇ · F =
1

cosφ
(
∂

∂φ
(Fφ cosφ) +

∂Fλ
∂λ

), (9)

where Fφ and Fλ are the flux components in the latitude (φ) and longitude (λ) directions on the sphere
respectively.

3. Derivation of the proposed method

3.1. Discretization of the divergence operator

The derivation of the new central-upwind scheme will be described in detail for the three steps: recon-
struction, evolution, and projection. We will develop and give a semi-discrete form of the proposed method
for general computational grid used to discretize the sphere. We assume the discretization of the sphere
S2 :=

⋃j=N
j=1 Cj , where Cj are the computational cells with area |Cj |. We denote by mj the number of cell

sides of Cj and by Cj1, Cj2, ...Cjmj the neighboring computational cells that share with Cj the common sides
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(∂Cj)1, (∂Cj)2, ...(∂Cj)mj , respectively. The length of each cell-interface (∂Cj)k is denoted by ljk. The dis-
crete value of the state variable u(t, x) inside the computational cell Cj at a point Gj ∈ Cj is denoted by unj
at step n. The longitude and latitude coordinates of the suitable point Gj to use inside each computational
cell Cj are presented in Section 4.2. These coordinates should be chosen according to the reconstruction of
the state variable u(t, x) over the computational cells used on the sphere. Finally, we use the notations ∆t
and tn := n∆t for the time step and the time at step n, respectively. Note that the development of the first
order in time is sufficient to have the exact semi-discrete form of the proposed scheme. The resulting ODE
can be numerically solved using a higher-order SSP ODE solver as Runge-Kutta of multistep methods. In
the numerical experiments, the third-order TVD Runge-Kutta method proposed by Shu and Osher [28] is
used.

In this section, we will present a general form of the discretization of the divergence operator for general
computational grid on the sphere. The approximation of the flux divergence can be written using the
divergence theorem as

[∇ · F (x, u)]approx =
Ij
|Cj |

,

Ij = [

∮
∂Cj

F (x, u) · ν(x)ds]approx,
(10)

where ν(x) is the unit normal vector to the boundary ∂Cj of the computational cell Cj and ds is the
infinitesimal length along ∂Cj .

The scalar potential function h is used to obtain the following approximation along each side of the
computational cell Cj .

Claim 3.1. For a three-dimensional flux Φ(x, u) given by (3), where h ≡ h(x, u) is a smooth function in
the neighborhood of the sphere S2, the total approximate flux through the cell interface e is given by∮ e2

e1
F (x, u) · ν(x)ds = −(h(e2, uj)− h(e1, uj)), (11)

where e1 and e2 are the initial and final endpoints of the side e using the sense of integration and uj is the
estimate value of the variable u along the side e.

Namely, the flux vector is written in the form F (x, u) = n(x) ∧ Φ(x, u) and we can derive the approxi-
mation of the integral along each cell side of Cj∮ e2

e1
F (x, u) · ν(x)ds =

∮ e2

e1
(n(x) ∧ Φ(x, u)) · ν(x)ds

= −
∮ e2

e1
Φ(x, u) · (n(x) ∧ ν(x))ds = −

∮ e2

e1
∇h(x, u) · τ(x)ds

= −
∮ e2

e1
∇∂Cj

h(x, u)ds = −(h(e2, uj)− h(e1, uj)),

(12)

where τ(x) is the unit vector tangent to the boundary ∂Cj .

Remark 3.2. Using the discrete approximations based on Claim 3.1, if a constant value of the state variable
u(t, x) = uj = ū is considered one obtains

[∇ · F (x, u)]approx =
1

|Cj |
[

∮
∂Cj

F (x, u) · ν(x)ds]approx

= −
∑
e∈∂Cj

(h(e2, ū)− h(e1, ū)) = 0.
(13)

This confirms that the discrete approximation of the divergence operator respects the divergence free condition
which is the geometric requirement that the proposed scheme should satisfy.
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3.2. Reconstruction method

In the following, we will present the reconstruction of the proposed central-upwind scheme. The semi-
discrete form of the proposed scheme for Equation (4) will be derived by using the approximation of the cell
averages of the solution. At each time t = tn the computed solution is

unj ≈
1

|Cj |

∫
Cj

u(x, tn)dVg, (14)

where dVg =
√
gdx1dx2.

The discrete values unj of the solution at time t = tn are used to construct a conservative piecewise
polynomial function with possible discontinuities at the interfaces of the computational cells Cj

ũn(x) =
∑
j

wnj (x)χj(x), (15)

where wnj (x) is a polynomial in two variables (λ and φ), and χj is the characteristic function which is defined
using the Kronecker symbol δjk and for any point of spatial coordinate x inside the computational cell Ck
we consider χj(x) := δjk.

The maximum of the directional local speeds of propagation of the waves at the kth interface inward and
outward of the computational cell Cj are denoted by ainjk and aoutjk , respectively. When the solution evolves
over a time step ∆t, the discontinuities move inward and outward the kth interface of the computational
cell Cj with maximum distances ainjk∆t and aoutjk ∆t, respectively. These distances of propagation are used at
the computational cells to delimit different areas in which the solution still smooth and the areas in which
the solution may not be smooth when it evolves from the time level tn to tn+1.

We define the domain Dj as the part inside the cell Cj in which the solution still smooth, see Figure 1.
Two other types of domains are defined, the first type includes the rectangular domains Djk, k = 1, 2...mj ,
along each side of Cj of width (aoutjk + ainjk)∆t and length ljk + O(∆t) and the second type includes the
domains denoted by Ejk, k = 1, 2...mj , around the cell vertices of computational cells. These domains
are decomposed into two sub-domains Djk = D+

jk ∪ D
−
jk and Ejk = E+

jk ∪ E
−
jk, where the sub-domains

with the superscripts plus signs “+” and minus signs “−” are the domains inside and outside of the cell
Cj , respectively. For purely geometrical reasons, the areas of the three types of sub-domains are of orders
|Dj | = O(1), |Djk| = O(∆t) and |Ejk| = O(∆t2).

We consider the projection of the flux vector F̃ according to the orthogonal to the kth cell interface
(∂Cj)k

fjk = Njk · F̃ , (16)

where Njk is the unit normal vector to the cell interface (∂Cj)k and F̃ has the components
√
gF j(x, v/

√
g)

which are used in Equation (8).
The one-sided local speeds of propagation of the waves at the kth cell interface (∂Cj)k, inward and

outward the computational cell Cj , are estimated by

aoutjk = max{∂fjk
∂v

(Mjk, uj(Mjk)),
∂fjk
∂v

(Mjk, ujk(Mjk)), 0},

ainjk = −min{∂fjk
∂v

(Mjk, uj(Mjk)),
∂fjk
∂v

(Mjk, ujk(Mjk)), 0},
(17)

where uj(Mjk) is the value of the state variable u at the midpoint Mjk of (∂Cj)k, which is obtained from
the non-oscillatory reconstruction for the computational cell Cj and ujk(Mjk) is the value of u at the same
point Mjk using the non-oscillatory reconstruction for the neighboring cell Cjk.
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Figure 1: Schematic view of the decomposition of the control volume

3.3. Evolution and projection steps

The computed cell averages ūn+1
j of the numerical solution at time step tn+1 over the computational

cells Cj are used to obtain the piecewise linear reconstruction w̃n+1 which should satisfy the following
conservative requirement

ūn+1
j =

1

|Cj |

∫
Cj

w̃n+1(x)dVg. (18)

The average of the function w̃n+1 over the domain Dj is denoted by w̄n+1(Dj)

w̄n+1(Dj) =
1

|Dj |

∫
Dj

w̃n+1(x)dVg. (19)

Note that it is possible to derive the fully discrete form of the proposed scheme but it is impractical to
use and for simplicity, we will develop the semi-discrete form of the scheme. The ODE for approximating
the cell averages of the solutions is derived by tending the time step ∆t to zero. This eliminates some terms
because of their orders and we keep the more consistent terms

dūj
dt

(tn) = lim
∆t→0

ūn+1
j − ūnj

∆t

= lim
∆t→0

1

∆t
[

1

|Cj |

∫
Dj

w̃n+1(x)dVg +
1

|Cj |

mj∑
k=1

∫
D+

jk

w̃n+1(x)dVg

+
1

|Cj |

mj∑
k=1

∫
E+

jk

w̃n+1(x)dVg − ūnj ].

(20)

Since the areas of domains Ejk with k = 1, 2, ...,mj are of order ∆t2 we obtain∫
E+

jk

w̃n+1(x)dVg = O(∆t2). (21)
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This approximation allows us to deduce that the third term on the right-hand side of Equation (20) is
of order ∆t2 and the result for the limit of this term vanishes for the ODE.

The second term in Equation (20), in which we use the rectangular domains D+
jk, will be estimated

by using the assumption that the spatial derivatives of w̃n+1 are bounded independently of ∆t. Under
this assumption the following Claim gives an estimation of this term with an error of order ∆t2 for each
k ∈ [1,mj ].

Claim 3.3. Consider the reconstruction given by (15), its evolution w̃n+1 over the global domain, and the
definitions given in Section 3.2 for the domains Djk and D+

jk. If we assume that the spatial derivatives of

w̃n+1 are bounded independently of ∆t, then∫
D+

jk

w̃n+1(x)dVg = |D+
jk|w̄

n+1(Djk) +O(∆t2). (22)

The proof is as follows. It is obvious that for the case
∣∣∣D+

jk

∣∣∣ = 0 or
∣∣∣D−jk∣∣∣ = 0 equation (22) is valid. We

assume that
∣∣∣D+

jk

∣∣∣ ∣∣∣D−jk∣∣∣ 6= 0 and we consider

R =

∫
D+

jk

w̃n+1(x)dVg − |D+
jk|w̄

n+1(Djk)

We have

R =

∫
D+

jk

w̃n+1(x)dVg −

∣∣∣D+
jk

∣∣∣
|Djk|

(

∫
D+

jk

w̃n+1(x)dVg +

∫
D−

jk

w̃n+1(x)dVg)

=
|D+

jk|
|Djk|

[
|D−jk|
|D+

jk|

∫
D+

jk

w̃n+1(x)dVg −
∫
D−

jk

w̃n+1(x)dVg]

=
|D+

jk|
|Djk|

[
aoutjk

ainjk

∫ 0

−ainjk∆t

w̃n+1(s)l̃jkds−
∫ aout

jk ∆t

0

w̃n+1(s)l̃jkds],

(23)

where l̃jk is the length of the domain Djk and s is a variable according to the orthogonal outward axis to
the kth cell interface, see Figures 1 and 3.

One obtains after the change of variable in the first integral of the last equality in (23)

R =
|D+

jk|
|Djk|

l̃jk

∫ aout
jk ∆t

0

(w̃n+1(−
ainjk
aoutjk

s)− w̃n+1(s))ds.

Using the mean value theorem to the function w̃n+1 we obtain

R = −
|D+

jk|
|Djk|

l̃jk

∫ aout
jk ∆t

0

ain + aout

aout
s
∂w̃n+1

∂s
(cs)ds,

where cs ∈ [min(s,−sainjk/aoutjk ),max(s,−sainjk/aoutjk )].

We denote by M the upper bound value of the spatial derivative of the function w̃n+1 over the domain
Djk. Therefore we obtain

|R| ≤Ml
|D+

jk|
|D−jk|

∫ aout
jk ∆t

0

sds =
Ml

2
|D+

jk||D
−
jk|.

Since l̃jk = ljk + O(∆t), and both the areas |D+
jk| and |D−jk| are of order ∆t we obtain R = O(∆t2). This

completes the proof.
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Using Equation (22) in Claim 3.3 one obtains

1

|Cj |

mj∑
k=1

∫
D+

jk

w̃n+1(x)dVg =
1

|Cj |

mj∑
k=1

|D+
jk|w̄

n+1(Djk) +O(∆t2)

=
∆t

|Cj |

mj∑
k=1

ainjk(ljk +O(∆t))w̄n+1(Djk) +O(∆t2).

(24)

Therefore Equation (20) can be written as

dūj
dt

(tn) = lim
∆t→0

1

∆t
[
|Dj |
|Cj |

w̄n+1(Dj)− ūnj ] +

mj∑
k=1

lim
∆t→0

|D+
jk|

∆t|Cj |
w̄n+1(Djk), (25)

where

w̄n+1(Djk) =
1

|Djk|

∫
Djk

w̃n+1(x)dVg. (26)

In order to derive the semi-discrete form of the proposed scheme from Equation (25), one needs to
compute the average values w̄n+1(Djk) and w̄n+1(Dj). To compute w̄n+1(Djk), Equation (4) is integrated
over the space-time control volume Djk × [tn, tn+1]. After integration by parts and applying the divergence
theorem to transform the surface integral of the divergence operator to the boundary integral and using the
approximation (11) of the flux through the cell interfaces, the following equations are obtained

w̄n+1(Djk) =
1

|Djk|
[

∫
D+

jk

wnj (x)dVg +

∫
D−

jk

wnjk(x)dVg]

− 1

|Djk|

∫ tn+1

tn

∫
Djk

∇ · F (x, u)dVg,

(27)

and ∫
Djk

∇ · F (x, u)dVg = [

∫
∂Djk

F (x, u) · ν(x)ds]approx =

i=4∑
i=1

∫
(∂Djk)i

F (x, u) · ν(x)ds

= −[−h(e2
jk, uj(Mjk)) + h(e1

jk, uj(Mjk)) + h(e2
jk, ujk(Mjk))− h(e1

jk, ujk(Mjk))] +O(∆t),

(28)

where (∂Djk)i, i = 1, 2, 3, 4, are the four edges of the rectangular domain Djk, e2
jk and e1

jk are the initial
and final endpoints of the cell interface (∂Cj)k, and as mentioned before wnj and wnjk are the piecewise
polynomial reconstructions in the computational cells Cj and Cjk respectively at time tn.

The term on the right-hand side of Equation (28) of order O(∆t) corresponds to the global result of the
integration along the two edges of the domain Djk having the length (aintjk + aoutjk )∆t, and the rest of the
integration due to the difference between the length of the domain Djk and the length of the cell interface
(∂Cj)k.

In order to compute the spatial integrals in Equation (27), the Gaussian quadrature can be applied. In
our case, the midpoint rule is used for simplicity∫

D+
jk

wnjkdVg +

∫
D−

jk

wnjkdVg ≈ ljk∆t[ainjkuj(Mjk) + aoutjk ujk(Mjk)]. (29)

Equations (27), (28) and (29) lead to

lim
∆t→0

w̄n+1(Djk) =
ljk

ainjk + aoutjk

[ainjkuj(Mjk) + aoutjk ujk(Mjk)]

+
1

ainjk + aoutjk

[−h(e2
jk, uj(Mjk)) + h(e1

jk, uj(Mjk)) + h(e2
jk, ujk(Mjk))− h(e1

jk, ujk(Mjk))].

(30)
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Therefore

lim
∆t→0

mj∑
k=1

∣∣∣D+
jk

∣∣∣
∆t |Cj |

w̄n+1(Djk) =

mj∑
k=1

ainjkljk

|Cj | (ainjk + aoutjk )
[ainjkuj(Mjk) + aoutjk ujk(Mjk)]

+

mj∑
k=1

ainjk
|Cj | (ainjk + aoutjk )

[−h(e2
jk, uj(Mjk)) + h(e1

jk, uj(Mjk)) + h(e2
jk, ujk(Mjk))− h(e1

jk, ujk(Mjk))].

(31)
Now, the average value w̄n+1(Dj) will be computed. Equation (4) is integrated over the space-time control
volume Dj × [tn, tn+1] and after integration by parts, using the divergence theorem to transform the surface
integral to boundary integral and Equation (11) one obtains

w̄n+1(Dj) =
1

|Dj |

∫
Dj

wnj dVg −
1

|Dj |

∫ tn+1

tn

∫
Dj

∇ · F (x, u)dVg

=
1

|Dj |

∫
Dj

wnj dVg −
∆t

|Dj |

mj∑
k=1

[−h(e2
jk, uj(Mjk)) + h(e1

jk, uj(Mjk))].

(32)

Using the previous equality we obtain

1

∆t
[
|Dj |
|Cj |

w̄n+1(Dj)− ūnj ] =

1

∆t
{ 1

|Cj |

∫
Dj

wnj dVg −
∆t

|Cj |

mj∑
k=1

[−h(e2
jk, uj(Mjk)) + h(e1

jk, uj(Mjk))]− ūnj },
(33)

which leads to

lim
∆t→0

1

∆t
[
|Dj |
|Cj |

w̄n+1(Dj)− ūnj ] =

− 1

|Cj |

mj∑
k=1

ainjkljkuj(Mjk)− 1

|Cj |

mj∑
k=1

[−h(e2
jk, uj(Mjk)) + h(e1

jk, uj(Mjk))].

(34)

Equations (31) and (34) are used together to obtain the following semi-discrete form

dūj
dt

= − 1

|Cj |

mj∑
k=1

ainjkljkuj(Mjk)− 1

|Cj |

mj∑
k=1

[−h(e2
jk, uj(Mjk)) + h(e1

jk, uj(Mjk))]+

mj∑
k=1

ainjkljk

|Cj | (ainjk + aoutjk )
[ainjkuj(Mjk) + aoutjk ujk(Mjk)]+

mj∑
k=1

ainjk
|Cj | (ainjk + aoutjk )

[−h(e2
jk, uj(Mjk)) + h(e1

jk, uj(Mjk)) + h(e2
jk, ujk(Mjk))− h(e1

jk, ujk(Mjk)).

(35)

This equation can be rewritten in the following form

dūj
dt

=
1

|Cj |

mj∑
k=1

ainjka
out
jk ljk

ainjk + aoutjk

(ujk(Mjk)− uj(Mjk)) +
ainjka

out
jk

|Cj | (ainjk + aoutjk )
{ainjk[h(e2

jk, uj(Mjk))

− h(e1
jk, uj(Mjk))] + aoutjk [h(e2

jk, ujk(Mjk))− h(e1
jk, ujk(Mjk))]},

(36)

which can be rewritten as follows

9



dūj
dt

= − 1

|Cj |

mj∑
k=1

ainjkH(ujk(Mjk)) + aoutjk H(uj(Mjk))

ainjk + aoutjk

+
1

|Cj |

mj∑
k=1

ainjka
out
jk ljk

ainjk + aoutjk

[ujk(Mjk)− uj(Mjk)],

(37)
where H(uj(Mjk)) and H(ujk(Mjk)) are given by

H(uj(Mjk)) = −[h(e2
jk, uj(Mjk))− h(e1

jk, uj(Mjk))]

H(ujk(Mjk)) = −[h(e2
jk, ujk(Mjk))− h(e1

jk, ujk(Mjk))].
(38)

The function H is defined in the form (38) in order to be consistent with the total approximate flux
through the cell interface as presented by Equation (11) in Claim 3.1.

Remark 2. If the value of ain
jk + aout

jk in Equation (37) is zero or very close to zero (smaller than 10−8

in our numerical experiments), we avoid division by zero or by a very small number using the following
approximations

ainjkH(ujk(Mjk)) + aoutjk H(uj(Mjk))

ainjk + aoutjk

≈ 1

2
[

mj∑
k=1

H(uj(Mjk)) +

mj∑
k=1

H(ujk(Mjk))],

ainjka
out
jk

|Cj | (ainjk + aoutjk )

mj∑
k=1

ljk[ujk(Mjk)− uj(Mjk)] ≈ 0.

(39)

These approximations are obtained using similar extreme distances of the propagation of the waves at
the cell interface inward and outward the computational cell to define the domains Dj , Djk and Ejk.

The semi-discretization (37) and (38) is a system of ODEs, which has to be integrated in time using
an accurate and stable temporal scheme. In our numerical examples reported in Section 6, we used the
third-order total variation diminishing Runge-Kutta method.

3.4. The geometry-compatible condition
In the semi-discrete form (37) and (38) of the proposed scheme, if we consider a constant value of the

function u ≡ ū, the second term in the right-hand side of Equation (37) vanishes. For this constant function
we obtain for each interface cell k

uj(Mjk) = ujk(Mjk) = ū, (40)

and
H(uj(Mjk)) = H(ujk(Mjk)) (41)

The first term in the right-hand side of Equation (37) becomes

− 1

|Cj |

mj∑
k=1

ainjkH(ujk(Mjk)) + aoutjk H(uj(Mjk))

ainjk + aoutjk

= − 1

|Cj |

mj∑
k=1

H(uj(Mjk)) (42)

Since we have

mj∑
k=1

H(uj(Mjk)) =

mj∑
k=1

H(ujk(Mjk)) = −
mj∑
k=1

[h(e2
jk, ū)− h(e1

jk, ū)] = 0, (43)

we conclude that the first term on the right-hand side of Equation (37) will be canceled which confirms that
the proposed scheme respects the geometry-compatibility condition.

Remark 3.4. In the proposed central-upwind finite volume method, the midpoint rule was used to compute
the spatial integrals. In order to improve the accuracy of the proposed scheme, the Gaussian quadrature can
be used instead of the midpoint rule. The Gaussian quadrature will not have any impact on the geometry-
compatibility condition of the proposed scheme.
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4. Formulation using the latitude-longitude grid on the sphere

4.1. Computational grid on the sphere

The geometry-compatible scheme was developed in the previous section for scalar nonlinear hyperbolic
conservation laws using general grid on the sphere. However, in order to prevent oscillations an appropriate
piecewise linear reconstruction should be proposed according to the computational grid used in the proposed
method. In the following, we will describe the computational grid and the non-oscillatory piecewise linear
reconstruction used in our numerical experiments.

The position of each point on the sphere can be represented by its longitude λ ∈ [0, 2π] and its latitude
φ ∈ [−π/2, π/2]. The grid considered in our numerical examples is shown in Figure 2. The coordinates are
singular at the south and north poles, corresponding to φ = −π/2 and φ = π/2, respectively. The Cartesian
coordinates are denoted by x = (x1, x2, x3)T ∈ R3 for a standard orthonormal basis vectors i1, i2, and i3.

X
Y

Z

Figure 2: Type of grid used on the sphere

The unit tangent vectors in the directions of longitude and latitude at each point x on the sphere of
coordinates (λ, φ) are given as follows

iλ = − sinλi1 + cosλi2,

iφ = − sinφ cosλi1 − sinφ sinλi2 + cosφi3.
(44)

The unit normal vector to the sphere at the same point x ∈ S2 is given by

n(x) = cosφ cosλi1 + cosφ sinλi2 + sinφi3. (45)

In spherical coordinates, for any vector field F represented by F := Fλiλ + Fφiφ, the equation of
conservation law (4), can be rewritten as

∂tu+
1

cosφ
(
∂

∂φ
(Fφ cosφ) +

∂Fλ
∂λ

) = 0. (46)
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The three general structures of the computational cells used as part of the discretization grid on the
sphere are shown in Figure 3 (a-b-c). When we go from the equator to the north or south poles, the cells
are changed by a ratio of 2 at some special latitude circles to reduce the number of cells in order to satisfy
the stability condition and to ensure consistency of precision in the entire domain of the sphere.

The domain of each cell Ω is defined as Ω := {(λ, φ), λ1 6 λ 6 λ2, φ1 6 φ 6 φ2}. Near the north or
south poles, a triangular cell is considered which is a special case of the standard rectangular cell shown in
Figure 3 with zero length for the side located on the pole.

4.2. A non-oscillatory piecewise-linear reconstruction

In this section, we describe the piecewise linear reconstruction used in the proposed scheme. For sim-
plicity, in the notations we will use the indices i and j for the cell centers along the longitude and latitude,
respectively (see, Figure 3). At each time step tn, data cell average values uni,j in each cell of center (λi, φj)
are locally replaced by a piecewise linear function. The obtained reconstruction is as follows

uni,j(λ, φ) = uni,j + (λ− λi)µni,j + (φ− φj)σni,j , (47)

where µni,j and σni,j are the slopes in the directions of longitude and latitude, respectively. To prevent
oscillations, we propose the following minmod-type reconstruction to obtain the slopes in the longitude and
latitude directions

µni,j = minmod[
uni+1,j − uni,j
λi+1 − λi

,
uni+1,j − uni−1,j

λi+1 − λi−1
,
uni,j − uni−1,j

λi − λi−1
)],

σni,j = minmod[
uni,j+1 − uni,j
φj+1 − φj

,
uni,j+1 − uni,j−1

φj+1 − φj−1
,
uni,j − uni,j−1

φj − φj−1
)],

(48)

where the minmod function is defined as

minmod(κ1, κ2, κ3)

=

{
κmin(|κ1|, |τ2|, |κ3|), if κ = sign(κ1) = sign(κ2) = sign(κ3),

0, otherwise.
.

(49)

At each step, we compute the average values of the state variable u in the computational cells. The
same values are used as the values of u at the cell centers of coordinates (λi, φj). The suitable points, inside
the cells which respect these conditions for the linear reconstruction used in this study, should have the
following spherical coordinates

λi =
λ1 + λ2

2
,

φj =
φ2 sin(φ2)− φ1 sin(φ1) + cosφ2 − cosφ1

sinφ2 − sinφ1
,

(50)

where λ1, λ2, φ1, and φ2 correspond to the longitude and latitude coordinates of the cell nodes as shown in
Figure 3.

5. Geometry-compatible flux vectors and particular solutions of interest

5.1. Classes of geometry-compatible flux vectors

We have introduced in [3], two classes of flux vector fields for Equation (46). In this classification, the
structure of the potential function h(x, u) was used to distinguish between foliated and generic fluxes. In
the proposed classification the parameterized level sets defined by ΓC,u =

{
x ∈ R3

/
h(x, u) = C

}
, where

C ∈ R, are used for the flux vector F (x, u) = n(x) ∧ ∇h(x, u) associated to the potential function h. The
flux F is called a foliated flux field if the associated family of level sets

{
ΓC,u

}
C∈R in R3 is independent of

the state variable u. In other words, for any two parameters u1, u2 one can find two real numbers C1, C2

12
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such that ΓC1,u1 = ΓC2,u2 . For the generic flux field, the potential function h = h(x, u) does not have this
structure.

The dependency of the potential function on the space variable x generates the propagation of the waves,
while the dependency on the state variable u leads to the formation of shocks in the solutions. The foliated
flux with linear behavior generates the spatially periodic solutions while the foliated flux with nonlinear
behavior can generate nontrivial stationary solutions. In our analysis in [3], we have concluded that the
new classification introduced and the character of linearity of the flux are sufficient to predict the late-time
asymptotic behavior of the solutions. For a linear foliated flux, the solutions are simply transported along
the level sets. The generic flux generates large variations in solutions, which converge to constant values
within independent domains on the sphere. For the nonlinear foliated flux, the solution converges to its
constant average in each level set. For this flux, any steady state solution should be constant along each
level set. This type of nontrivial stationary solutions are used in our numerical experiments to demonstrate
the performance of the proposed central-upwind finite volume method.

5.2. Particular solutions of interest

The non-trivial steady state solutions which will be used in our numerical experiments are obtained
using nonlinear foliated fluxes. We are particularly interested in nonlinear foliated fluxes based on a scalar
potential function of the form

h(x, u) = ϕ(x · a)f(u), (51)

where x ·a denotes the scalar product of the vector x and some constant vector a = (a1, a2, a3)T ∈ R3, while
f is a function of the state variable u and ϕ is a function of one variable. This scalar potential function leads
to the gradient-type flux vector field Φ(x, u) = ϕ′(x · a)f(u)a, where ϕ′ is the derivative of the function ϕ.
The flux is obtained using Equation (2) as

F (x, u) = ϕ′(x · a)f(u)n(x) ∧ a. (52)

For this foliated flux vector and any function ũ which depends on one variable, the function defined as
u0(x) = ũ(x · a) = ũ(a1x1 + a2x2 + a3x3) is a steady state solution to the conservation law (46) associated
to the flux vector F (x, u). Arbitrary functions ϕ and values of the vector a are used to construct nonlinear
foliated fluxes and the corresponding nontrivial stationary solutions. In the following, ∇ will be used as the
standard gradient operator defined using the variable x and if other variables are used, they will be specified
in the notation by ∇y for the gradient operator using any other variable y.

In order to prove that the function u0(x) is a steady state solution of (46), the Claim 3.2 in [5] will be
used. This claim states that for any smooth function h(x, u) defined on S2 with the associated gradient
Φ = ∇h, if the function u0 defined on S2 satisfies the condition ∇yh(y, u0(x))|y=x = ∇H(x), where H is
a smooth function defined in a neighborhood of S2, then the function u0 is a steady state solution of the
conservation law (46) associated to the flux vector F (x, u) = n(x) ∧ Φ(x, u). This result will be used to
prove the following corollary related to nontrivial stationary solutions which are obtained using the nonlinear
foliated flux vectors.

Claim 5.1. (A family of steady state solutions). Consider the foliated flux vector F (x, u) = n(x) ∧
Φ(x, u) with Φ = ∇h and h(x, u) = ϕ(x · a)f(u), where a = (a1, a2, a3)T ∈ R3, f is a function of the state
variable u and the function ϕ depends on one variable. For any function ũ which depends on one variable,
the function defined as u0(x) = ũ(x ·a) = ũ(a1x1 +a2x2 +a3x3) is a steady state solution to the conservation
law (46) associated to the flux F (x, u).

We prove this result as follows, and consider the function

H(x) = H0(a1x1 + a2x2 + a3x3), (53)

where H0 is defined by

H0(µ) =

∫ µ

µ0

ϕ′(µ)f(ũ(µ))dµ, (54)
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for some reference value µ0.
The function h(x, u) = ϕ(x · a)f(u) is smooth in R3 and one obtains

∇yh(y, u0(x))|y=x = ϕ′(x · a)f(ũ(x · a))

k=3∑
k=1

akik, (55)

which leads to
∇yh(y, u0(x))|y=x = ∇H(x) (56)

As mentioned before, according to Claim 3.2 in [5], the condition (56) is sufficient to conclude that the
function u0(x) is a steady state solution of the conservation law (46). This proves the claim.

We will consider the nonlinear foliated flux vectors based on the scalar potential functions of the form
h(x, u) = ϕ(x1)f(u), where the function ϕ is not constant. For this flux, any non-constant function which
depends on x1 only is a nontrivial steady state solution of Equation (46). Another form of nonlinear foliated
flux is used in our numerical tests which is obtained by using the scalar potential function of the form
h(x, u) = ϕ(x1 +x2 +x3)f(u). This case leads to steady state solutions of the form u0(x) = ũ(x1 +x2 +x3).
In this paper we will consider discontinuous steady state solutions to test the performance of the proposed
central-upwind method. We will use the nonlinear foliated flux vectors which are obtained by using the
scalar potential function of the form h(x, u) = ϕ(x · a)f(u), where f(u) = u2/2. For these flux vectors, the
function defined as u0(x) = χ(x · a)ũ(x · a) is a discontinuous stationary solution of Equation (46), where
χ(x · a) = ±1.

In Tests 7 and 8, the proposed central-upwind scheme is employed to compute confined solutions of the
conservation law (46). In these cases, we consider the flux vector F (x, u) which vanishes outside a domain Θ
in the sphere S2. If the initial condition u0(x) vanishes outside of Θ, then the solution should vanish outside
the domain Θ for all time. However, the solution can evolve inside the domain Θ depending on the type of
flux and the initial condition considered inside of Θ. This case is observed in Test 7 presented in Section 6,
where we choose the initial condition which is not stationary inside the domain Θ but it vanishes outside
this domain. In Test 8, we will consider the flux vector F (x, u) which vanishes outside Θ and is defined
inside this domain using the scalar potential function h(x, u) = ϕ(x · a)f(u). This leads to a flux vector F
which satisfies the conditions mentioned in Claim 5.1. For this case, we will consider an initial condition
of the form u0(x) = ũ(x · a) inside a domain Θ and vanishes outside this domain. The solution should be
stationary inside Θ and should vanish outside this domain.

6. Numerical experiments

In this section, we demonstrate the performance of the proposed central-upwind scheme on a variety of
numerical examples. Different types of nonlinear foliated fluxes are used to construct some particular and
interesting solutions. In Example 1, four numerical tests are performed using different discontinuous steady
state solutions of the conservation law (46) with the nonlinear foliated flux vectors based on the scalar
potential functions of the form h(x, u) = ϕ(x1)f(u). In Example 2, two numerical tests are performed using
different discontinuous steady state solutions in the spherical cap of (46) which are obtained by using the
nonlinear foliated flux corresponding to the scalar potential function of the form h(x, u) = ϕ(x1+x2+x3)f(u).
In the third example, two numerical tests are performed where the proposed scheme is employed to compute
confined solutions.

Example 1—Discontinuous steady state solutions

First, we consider the potential function h(x, u) = x1f(u), where f(u) = u2/2 which leads to the
nonlinear foliated flux vector F (x, u) = f(u)n(x) ∧ i1. We take the following discontinuous steady state
solution of Equation (46) as initial condition (Test 1).

u2(x) =

{
γx3

1, −1 ≤ x1 ≤ 0.5,

−γx2
1/(2x1 + 1), 0.5 ≤ x1 ≤ 1,

(57)

15



where γ is an arbitrary constant which controls the amplitude and shocks of the solution. This solution has
a single closed curve of discontinuity on the sphere.

The numerical solution is computed using a grid with an equatorial longitude step ∆λ = π/96 and a
latitude step ∆φ = π/96, and a time step ∆t = 0.04. Figure 4, on the left, shows the numerical solution
with γ = 0.1 which is computed using the proposed scheme at a global time t = 5. The numerical solution
remains nearly unchanged in time using the proposed scheme. The numerical solution error defined by
using the L2−norm is computed by summation over all grid cells on the sphere. For Test 1, the error is
uerror = 1.5 × 10−4 at time t = 5 which is small compared to the full range of the numerical solution
umax − umin = 0.11237.

Another test is performed using the steady state solution (57) as initial condition with γ = 0.5 (Test
2) and the same computational grid used in Test 1 and a time step ∆t = 0.04. As is shown in Figure
4, on the right for Test 2, the solution remains nearly unchanged up to a global time t = 5. The error
using the L2−norm is uerror = 2.7 × 10−3, which is small compared to the full range of the solution
umax − umin = 0.56185.

Now we consider a new test (Test 3) using the following steady state solution, with more discontinuities,
which is defined in three domains separated by two closed curves on the sphere

u2(x) =


γx4

1, −1 ≤ x1 ≤ −0.5,

0.5γx3
1, −0.5 < x1 < 0.5,

−0.25γx2
1, 0.5 ≤ x1 ≤ 1.

(58)

The numerical solution is computed using a time step ∆t = 0.04 and the same grid on the sphere used in
the previous tests. As shown in Figure 5, on the left, the numerical solution which is obtained at time t = 5
using the proposed method based on the initial condition (58) with γ = 0.1 remains nearly unchanged. The
error is uerror = 9.6× 10−5, which is small compared to the full range umax − umin = 0.12488.

For γ = 0.5 (Test 4) we used the same computational grid and a time step ∆t = 0.04. As is shown in
Figure 5, on the right, again for this test the numerical solution at time t = 5 remains nearly unchanged.
The error using the L2−norm is uerror = 1.9×10−3, which is small compared to the full range of the solution
umax − umin = 0.62441.

Figure 4: Solutions on the entire sphere at time t = 5 for Test 1 (left) and Test 2 (right)
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Figure 5: Solutions on the entire sphere at time t = 5 for Test 3 (left) and Test 4 (right)

Example 2—Discontinuous steady state solutions in a spherical cap

In the following, the performance of the proposed finite volume method will be analyzed using some
particular steady state solutions in a spherical cap. The scalar potential function h(x, u) = (x1+x2+x3)f(u)
is considered with f(u) = u2/2. This leads to the nonlinear foliated flux F (x, u) = f(u)n(x)∧ (i1 + i2 + i3).
The function of the form u(x) = χ(θ)ũ(θ) is a steady state solution of Equation (46), where ũ is an arbitrary
real function depending on one variable and θ = x1 + x2 + x3.

In this numerical example (Test 5), the following discontinuous steady state solution is considered as
initial condition

u(0, x) =

{
0.1/(θ + 2), 0 ≤ θ,
− 0.1/(θ + 2), otherwise.

(59)

The numerical solution is computed by using a grid with an equatorial longitude step ∆λ = π/96 and
a latitude step ∆φ = π/96, and a time step ∆t = 0.02. Figure 6, on the left, shows the numerical solution
which remains nearly unchanged in time after being subjected to integration up to a global time t = 5 by
the proposed scheme. The numerical solution error defined by using the L2−norm is uerror = 1.3 × 10−3,
which is small compared to the full range umax − umin = 0.4232.

The following numerical example (Test 6) is performed using the same nonlinear foliated flux considered
in Test 5 and the steady state solution with more discontinuities defined by

u(0, x) =


0.2θ3, 0.5 ≤ θ,
0.1θ2, θ ≤ −0.5,

− 0.025, otherwise.

(60)

The numerical solution is computed using the same grid used in Test 5 and a time step ∆t = 0.02.
Figure 6, on the right, shows the numerical solution at time t = 5 which remains stationary with the error
uerror = 1.8× 10−3 which is negligible compared to the full range of the solution umax − umin = 1.0638.

Example 3—Confined solutions

In this part, two numerical tests are performed using confined solutions of the conservation law (46)
based on the flux vector which is obtained using the following potential function
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Figure 6: Solutions on the entire sphere at time t = 5 for Test 5 (left) and Test 6 (right)

h(x, u) =

{
x2

1f1(u)), x1 ≤ 0,

0, otherwise.
(61)

In Test 7, we consider the following function

u(x, 0) =

{
0.1(1 + x2

2)x1, x1 ≤ 0,

0, otherwise.
(62)

The solution of the conservation law (46), which is obtained using the function (62) as initial condition, is
confined and it vanishes outside the domain x1 ≤ 0. The numerical solution is computed using the proposed
scheme with an equatorial longitude step ∆λ = π/96, a latitude step ∆φ = π/96, and a time step ∆t = 0.04.
Figure 7, on the left, shows the numerical solution at time t = 5. The solution evolves in time inside the
domain x1 ≤ 0, but it vanishes outside this domain which is in good agreement with the evolution of the
analytical solution.

In the second numerical test (Test 8), we consider an initial condition which is a confined solution and
steady state inside the domain x1 ≤ 0. The following initial condition is considered

u(x, 0) =

{
0.1x1, x1 ≤ 0,

0, otherwise.
(63)

The numerical solution is computed using the proposed central-upwind scheme with the same grid and time
step which are used in Test 7. Figure 7, on the right, shows the numerical solution at time t = 5. The
solution remains steady state in the domain x1 ≤ 0, and it vanishes outside this domain for all time as the
initial condition which is in good agreement with the evolution of the analytical solution. The L2-error of
the numerical solution over the sphere is uerror = 9.6× 10−5 at time t = 5, which is small compared to the
full range of the solution umax − umin = 0.2
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Figure 7: Solutions on the entire sphere at time t = 5 for Test 7 (left) and Test 8 (right)

7. Concluding remarks

We have introduced a new geometry-preserving, central-upwind scheme for the discretization of hyper-
bolic conservation laws posed on the sphere. The main advantage of the proposed scheme is its simplicity
since it does not use Riemann problems. The proposed scheme is strongly connected to the analytic prop-
erties of the equation and the geometry of the sphere. In the proposed scheme, in order to improve the
accuracy, the Gaussian quadrature can be used instead of the midpoint rule to compute the spatial inte-
grals. The Gaussian quadrature will not have any impact on the geometry-compatibility condition of the
scheme. The semi-discrete form of the proposed method using the Gaussian quadrature will remain strongly
connected to the analytic properties of the equation and the geometry of the sphere.

In the proposed method, a non-oscillatory reconstruction is used in which the gradient of each variable is
computed using a minmod-function to ensure stability. Our numerical experiments demonstrate the ability
of the proposed scheme to avoid oscillations. The performance of the second-order version of the designed
scheme is tested using numerical examples. The results clearly demonstrated the proposed scheme’s potential
and ability to resolve the discontinuous solutions of conservation laws on the sphere.

Note that the formulation of the semi-discrete form of the proposed method is based on some approxi-
mations and assumptions. The scheme is more suitable for discontinuous solutions with shocks of average
amplitude. However, the proposed method has the advantage of simplicity compared to upwind schemes.
As previously mentioned, the first advantage is that the proposed scheme is Riemann-problem-solver-free.
The second advantage is related to the resolution, where the proposed scheme does not use any splitting
approach which is widely used in upwind schemes to simplify the resolution of the Riemann problem. This
again renders the proposed numerical scheme less expensive compared to upwind methods. The scheme de-
veloped for scalar nonlinear hyperbolic conservation laws could be extended to multidimensional hyperbolic
conservation laws and shallow water models posed on the sphere.
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